Physiologia Plantarum
Volume 173, Issue 3 p. 736-749
Special Issue Article
María Lorena Falcone Ferreyra, María Lorena Falcone Ferreyra Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina Search for more papers by this author Paloma Serra Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina Search for more papers by this author Corresponding Author Paula Casati Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina Correspondence Paula Casati, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina. Email: [emailprotected] Search for more papers by this author
María Lorena Falcone Ferreyra, María Lorena Falcone Ferreyra Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina Search for more papers by this author Paloma Serra Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina Search for more papers by this author Corresponding Author Paula Casati Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina Correspondence Paula Casati, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina. Email: [emailprotected] Search for more papers by this author
Edited by: W. Bilger
Abstract
Flavonoids are plant specialized metabolites that consist of one oxygenated and two aromatic rings. Different flavonoids are grouped according to the oxidation degree of the carbon rings; they can later be modified by glycosylations, hydroxylations, acylations, methylations, or prenylations. These modifications generate a wide collection of different molecules which have various functions in plants. All flavonoids absorb in the UV wavelengths, they mostly accumulate in the epidermis of plant cells and their biosynthesis is generally activated after UV exposure. Therefore, they have been assumed to protect plants against exposure to radiation in this range. Some flavonoids also absorb in other wavelengths, for example anthocyanins, which absorb light in the visible part of the solar spectrum. Besides, some flavonoids show antioxidant properties, that is, they act as scavengers of reactive oxygen species that could be produced after high fluence UV exposure. However, to date most reports were based on in vitro studies, and there is very little in vivo evidence of how their roles are carried out. In this review we first summarize the biosynthetic pathway of flavonoids and their characteristics, and we describe recent advances on the investigation of the role of three of the most abundant flavonoids: flavonols, flavones, and anthocyanins, protecting plants against UV exposure and high light exposure. We also present examples of how using UV-B supplementation to increase flavonoid content, is possible to improve plant nutritional and pharmaceutical values.
Open Research
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
Citing Literature
Volume173, Issue3
November 2021
Pages 736-749
- References
- Related
- Information
Close Figure Viewer
Previous FigureNext Figure
Caption
Download PDF
The full text of this article hosted at iucr.org is unavailable due to technical difficulties.